Acta Crystallographica Section C
Crystal Structure

Communications

ISSN 0108-2701

Sodium mycophenolate

Grety Rihs, ${ }^{\text {a* }}$ Christos Papageorgiou ${ }^{\mathbf{b}}$ and Sabine Pfeffer ${ }^{\mathbf{c}}$

${ }^{\mathrm{a}}$ Novartis Pharma AG, Core Technology Area, WSJ-503.1208, Lichtstrasse 35, CH-4056 Basel, Switzerland, ${ }^{\mathbf{b}}$ Novartis Pharma AG, Transplantation Research, Lichtstrasse 35, CH-4056 Basel, Switzerland, and ${ }^{\text {c }}$ Novartis Pharma AG, Pharma Development, WKL-127.304, CH-4002 Basel, Switzerland
Correspondence e-mail: grety.rihs@pharma.novartis.com

Received 7 December 1999
Accepted 10 January 2000
The title compound, sodium 6-(1,3-dihydro-4-hydroxy-6-methoxy-7-methyl-3-oxoisobenzofuran-5-yl)-4-methylhex-4enoate, $\mathrm{Na}^{+} \cdot \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{6}{ }^{-}$, is the sodium salt of the natural immunosuppressant compound mycophenolic acid. It consists of a phthalide moiety carrying four different substituents on the aromatic ring. The anion has no intramolecular hydrogen bonds, but a very strong intermolecular hydrogen bond links the phenolic hydroxy group to the carboxyl group of a neighbouring anion found in the same layer. Within a distance of $2.71 \AA$, the Na^{+}ion is surrounded by five O atoms from four different anions, forming a distorted square pyramid. This $\mathrm{Na}-\mathrm{O}$ network forms an infinite two-dimensional system running parallel to the $b c$ plane.

Comment

Mycophenolic acid (MPA) is the pharmacologically active agent of the recently introduced immunosuppressive drug mycophenolate mofetil (MMF, CellCept ${ }^{\mathrm{TM}}$; Behrend, 1998). In fact, MMF has never been detected systemically due to its fast hydrolysis to MPA, which is responsible for the gastrointestinal side effects and leukocytopenia observed in transplant patients (Holt et al., 1998). To alleviate the upper gastrointestinal tract problems, an enteric coated formulation of sodium mycophenolate, ERL080, (I), is currently in phase III clinical trials for the prophylaxis of transplant rejection. The phase I results demonstrated that, upon oral dosing, (I)

affords equivalent MPA exposure to that of MMF but with a longer mean $T_{\text {max }}$, which is indicative of the delivery of the drug in the small intestine (Schmouder et al., 1999). Since the

NMR conformation of (I) in water solution has been reported (Makara et al., 1996), as well as that of MPA in the solid state (Harrison et al., 1972), a crystal structure analysis of (I) was performed to determine its packing and to compare the resulting conformation with those in the above-mentioned reports.

In contrast with MPA, whose solid-state conformation was consistent with the solution NMR data for (I) (Makara et al., 1996), the latter adopts a different conformation in the solid state. The discrepancies between MPA and (I) are solely due to changes in the conformation of the hexenoic acid chain. The most relevant differences in the torsion angles are: $\mathrm{C} 10-$ $\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17135.7$ (2) [-120.8 (3) ${ }^{\circ}$ in MPA], C16-C17$\mathrm{C} 18-\mathrm{C} 19-98.9(3)\left[-5.9(5)^{\circ}\right.$ in MPA] and $\mathrm{C} 18-\mathrm{C} 19-$ C20-O5 $80.3(3)^{\circ}\left[-4.8(5)^{\circ}\right.$ in MPA]. The close contact of 3.802 (3) A between the two methyl groups C21 and C23 in (I) is remarkable compared with the values of 6.258 (5) \AA in MPA and $5.67 \AA$ in solution. For steric reasons, the C15-C16 bond of the alkyl side chain and the methoxy group lie at angles of 72.4 (2) and $87.5(3)^{\circ}$, respectively, to the phenyl ring plane. The corresponding values in MPA are 82.3 (3) and 81.8 (3) ${ }^{\circ}$, respectively. In MPA and (I), atom C21 and the hexenoic side chain are on the same side of the phthalide ring system. An intramolecular $\mathrm{O} 3-\mathrm{H} \cdots \mathrm{O} 2$ hydrogen bond can be observed in MPA but not in (I). In spite of the various deviations, the data on the structure of MPA and (I) demonstrate that the hexenoic acid chain adopts an extended conformation, and not the bent conformation seen upon complexation of the molecule with its enzymatic target (Sintchak et al., 1996).

The asymmetric unit with the adopted numbering scheme is shown in Fig. 1. The phthalide ring system is not completely planar, the dihedral angle between the plane of the fivemembered ring and that of the aromatic ring being $4.0(2)^{\circ}$. The Na^{+}ion coordinated to O 2 and O 3 lies 0.807 (2) \AA from the plane defined by the atoms $\mathrm{O} 2 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 9 / \mathrm{O} 3$.

The packing is illustrated in Fig. 2. The hydrophilic parts ($\mathrm{O} 2, \mathrm{O} 3, \mathrm{O} 4$ and O 5) of neighbouring anions are directed towards each other and connected via Na^{+}ions and hydrogen

Figure 1

An ORTEPII (Johnson, 1976) plot of the asymmetric unit of (I) showing 50% probability ellipsoids.
bonds to form an infinite two-dimensional network which runs parallel to the $b c$ plane. This kind of packing is probably the reason why the hexenoic acid chains adopt different conformations in the solid states of MPA and (I).

The environment of the Na^{+}ion is a distorted square pyramid, with the longest $\mathrm{Na}-\mathrm{O}$ bond $\left[\mathrm{Na} 24-\mathrm{O} 2^{\mathrm{v}}\right.$ 2.699 (3) Å; symmetry code: (v) $x, y-1, z]$ being in the apical position. The equatorial bond lengths fall into the range 2.249 (2)-2.423 (2) A. Atoms O5 and O2 serve as bridging atoms between Na^{+}ions. The four-membered ring [$\mathrm{Na} 24 / \mathrm{O} 5{ }^{\mathrm{ii}} /-$ $\mathrm{Na} 2{ }^{\text {iv }} / \mathrm{O} 5^{\text {iiii }}$; symmetry codes (ii) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (iii) $1-x$, $y-\frac{1}{2}, \frac{3}{2}-z$; (iv) $\left.1-x,-y, 1-z\right]$ lies on an inversion centre and is therefore planar. The $\mathrm{Na} 24 \cdots \mathrm{Na} 24^{\mathrm{iv}}$ distance across the inversion centre is 3.410 (2) \AA.

Figure 2
Packing diagram for (I) showing the $\mathrm{Na}-\mathrm{O}$ network (broken lines indicate hydrogen bonds); the symmetry codes are as in Table 1.

Experimental

Compound (I) was obtained upon treatment of a methanolic solution of commercially available mycophenolic acid with one equivalent of sodium methanolate. After stirring for 1 h at room temperature, the solvent was evaporated to dryness in vacuo to afford the desired compound (m.p. 463 K). Single crystals were grown by evaporation and cooling of a water/ethyl acetate solution from about 323 K to room temperature.

Crystal data

$\mathrm{Na}^{+} \cdot \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{6}{ }^{-}$
$M_{r}=342.31$
$\mathrm{Monoclinic}, P^{2} / 2_{1} / c$
$a=16.544(4) \AA \AA^{2}$
$b=4.4770(10) \AA$
$c=21.993(3) \AA$
$\beta=92.140(10)^{\circ}$
$V=1627.8(6) \AA^{3}$
$Z=4$

Data collection

[^0]
Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.121$
$S=0.918$
2913 reflections
217 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=-0.008$
$\Delta \rho_{\text {max }}=0.31 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.29 \mathrm{e}_{\mathrm{m}} \AA^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O1-C7	1.364 (3)	$\mathrm{O} 3-\mathrm{Na} 24$	2.249 (2)
O1-C14	1.437 (3)	O4-C20	1.271 (3)
O2-C7	1.217 (3)	O5-C20	1.224 (3)
$\mathrm{O} 2-\mathrm{Na} 24$	2.423 (2)	Na24-O5 ${ }^{\text {ii }}$	2.259 (2)
$\mathrm{O} 2-\mathrm{Na} 24^{\text {i }}$	2.699 (3)	$\mathrm{Na} 24-\mathrm{O} 5{ }^{\text {iii }}$	2.361 (2)
O3-C9	1.300 (2)	$\mathrm{Na} 24-\mathrm{Na} 24{ }^{\text {iv }}$	3.410 (2)
$\mathrm{O} 3-\mathrm{Na} 24-\mathrm{O}^{\text {ii }}$	166.76 (8)	$\mathrm{O} 5{ }^{\text {iii }}-\mathrm{Na} 24-\mathrm{O} 2$	152.69 (10)
$\mathrm{O} 3-\mathrm{Na} 24-\mathrm{O} 5{ }^{\text {iii }}$	83.55 (7)	$\mathrm{O} 3-\mathrm{Na} 24-\mathrm{O} 2{ }^{\text {v }}$	88.86 (8)
$\mathrm{O} 5{ }^{\text {iii }}-\mathrm{Na} 24-\mathrm{O} 5^{\text {iii }}$	84.88 (7)	$\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Na} 24-\mathrm{O} 2{ }^{\mathrm{v}}$	95.58 (9)
$\mathrm{O} 3-\mathrm{Na} 24-\mathrm{O} 2$	81.55 (7)	$\mathrm{O} 5^{\mathrm{iii}}-\mathrm{Na} 24-\mathrm{O} 2^{\mathrm{v}}$	80.53 (9)
$\mathrm{O} 5{ }^{\text {iii }}-\mathrm{Na} 24-\mathrm{O} 2$	106.36 (8)	$\mathrm{O} 2-\mathrm{Na} 24-\mathrm{O}^{2}$	121.77 (9)

Symmetry codes: (i) $x, 1+y, z$; (ii) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (iii) $1-x, y-\frac{1}{2}, \frac{3}{2}-z$; (iv) $1-x,-y, 1-z$; (v) $x, y-1, z$.

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\text {iii }}$	0.88	1.73	$2.464(3)$	139

Symmetry code: (iii) $1-x, y-\frac{1}{2}, \frac{3}{2}-z$.

All H atoms could be located from a difference Fourier map. The parameters of the H atom attached to O 3 were kept fixed and the other H atoms were treated as riding.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEPII (Johnson, 1976) and SCHAKAL97 (Keller, 1997).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN1094). Services for accessing these data are described at the back of the journal.

References

Behrend, M. (1998). Expert Opin. Invest. Drugs, 7, 1509-1519.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Harrison, W., Shearer, H. M. M. \& Trotter, J. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 1542-1544.
Holt, C. D., Sievers, T. M., Ghobrial, R. M., Rossi, S. J., Goss, J. A. \& McDiarmid, S. V. (1998). BioDrugs, 10, 373-384.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Keller, E. (1997). SCHAKAL97. University of Freiburg, Germany.
Makara, G. M., Keseru, G. M., Katjar-Peredy, M. \& Anderson, W. K. (1996). J. Med. Chem. 39, 1236-1242.
Schmouder, R., Arns, W., Merkel, F., Schoudrhury, S., Russell, D. \& Taccard,
G. (1999). Transplantation, 67 (Suppl.), S203.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. University of Göttingen, Germany.
Sintchak, M. D., Fleming, M. A., Futer, O., Raybuck, S. A., Chambers, S. P.,
Caron, P. R., Murcko, M. A. \& Wilson, K. P. (1996). Cell, 85, 921-930.

[^0]: Enraf-Nonius CAD-4 diffractometer
 $\omega / 2 \theta$ scans
 3432 measured reflections
 3334 independent reflections
 2058 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.058$

